Developing Pervasive Agent-based Applications:
A Comparison of two Coordination Approaches

Inmaculada Ayala', Mercedes Amor?’, Lidia Fuentes', Marco Mamei?, and
Franco Zambonelli?

! Departamento de Lenguajes y Ciencias de la Computacién
Universidad de Mélaga, Spain
{ayala,pinilla,lff}@lcc.uma.es
2 Dipartamento di Scienze e Metodi dell’Ingegneria
Universita degli studi di Modena e Reggio Emilia, Italy
{marco.mamei,franco.zambonelli}@unimore.it

Abstract. Pervasive computing is concerned with making our lives eas-
ier through digital environments that are sensitive, adaptive, and respon-
sive to human needs. Different works have shown the suitability of the
agent paradigm for the development of pervasive applications. However,
so far there is not a dominant approach adopted for the development
of agent-based pervasive systems. In particular, two key classes of ap-
proaches exist, based on FIPA interaction protocols and tuple spaces.
The contribution of this paper is the comparison and evaluation of tuple
spaces and FIPA-compliant coordination mechanisms for the develop-
ment of pervasive applications. To do so, we are going to compare two
approaches that exemplifies these agent technologies: MalacaTiny-Sol
and SAPERE.

Keywords: Pervasive computing, Agent Platforms, Tuple spaces, Eval-
uation, FIPA | Aspect Orientation

1 Introduction

Pervasive computing is about making our lives easier through digital environ-
ments that are sensitive, adaptive, and responsive to human needs [1]. Pervasive
computing proposes the development of a new generation of advanced systems,
in which cheap, interconnected computing devices are ubiquitous and capable
of helping users in a range of tasks [2]. Different technologies are contributing
to the development of this vision such as distributed computing, mobile com-
puting, human-computer interaction, expert systems or agent technology, just
to mention a few.

Different works have demonstrated the suitability of the agent paradigm for
the development of pervasive applications, because of their capacity to be au-
tonomous, reactive, proactive and social [3,4]. In recent years, pervasive applica-
tions based on agents have become a reality, with different projects that exploit
agent properties to implement adaptive applications. In these projects, agent

2 Inmaculada Ayala et al.

technologies have been adapted to these new environments composed of het-
erogeneous devices and communication means. Agents have been embedded in
new devices such as smartphones or sensors, and agent middlewares have been
extended to support the heterogeneity, adding new network wireless technolo-
gies, and new communication paradigms to facilitate the development of these
applications. Agents have been used as abstractions to model and implement
both functionality and devices of an Ambient Intelligence systems, to encapsu-
late artificial intelligence techniques, and to coordinate the different elements
that compose the application.

The works presented in [3, 4] highlight that there has still not been a common
approach adopted for the development of pervasive systems based on agents. In
particular, one can think of two radically different models to coordinate agents
that compose a pervasive application: indirect coordination based on tuple spaces
and coordination based on FIPA interaction protocols. These two options have
a great impact on the design of the agent and consequently, in the design of per-
vasive applications. In tuple-based approaches, agents interact by exchanging
tuples, which are ordered collections of information items. Agents communicate,
synchronize and cooperate through tuple spaces by storing, reading, and con-
suming tuples in an associative way [5]. In these approaches, agents have a sim-
pler design because the tuple spaces embeds most of the logics of coordination.
Contrarily, and in accordance with FIPA [6], agents are fundamental actors of a
domain, which are able to provide a number of services and provide the function-
ality of the application and integrate in their code the coordination strategies
too. In FIPA approaches, agent communication is based on message passing,
where agents communicate by sending individual messages to each other, which
are distributed through the Agent Platform (AP).

The contribution of this paper is a detailed comparison and evaluation of
tuple spaces and FIPA-compliant approaches for the development of pervasive
applications. The goal of this comparison is to illustrate the advantages and
disadvantages of these approaches in the development of these applications, and
where one approach is more advantageous over another. In order to do this, we
are going to use two agent systems that exemplify these agent communication
and coordination models: MalacaTiny-Sol [7] as an example of FIPA-based com-
munication, and SAPERE [8] as an example of tuple-based coordination. Using
both approaches, we are going to design a few case studies in an Intelligent Mu-
seumn (IM) in order to compare the resulting systems. In this evaluation we are
going to asses the internal design of the agent system, and in addition other
important properties of pervasive systems such as adaptability, robustness or
privacy. While this paper is grounded on the comparison between MalacaTiny-
Sol and SAPERE, we believe most of our analysis can be extended to other
FIPA based versus tuple space based implementations.

This paper is structured as follows: Section 2 presents the two approaches that
are going to be used in the evaluation, MalacaTiny-Sol and SAPERE. Section
3 describes how to use both approaches to model different scenarios in an IM.

Developing Pervasive Agent-based Applications 3

Section 4 accomplishes the comparison and evaluation of both approaches and
the paper finishes with a conclusions section.

2 Background

In this section we will present MalacaTiny-Sol and SAPERE. These agent sys-
tems exemplify two radically different models to coordinate agents that com-
pose a pervasive application: indirect interaction using tuple spaces and direct
interaction using interaction protocols. The first one is a traditional coordina-
tion model which allows agents to interact uncoupling communicating agents in
both time and space by allowing agents to communicate without knowing each
other’s identities [5]. In order to communicate in an asynchronous way agents
read, consume, write or create new tuples in the shared tuple space. The rules
(or laws) that govern coordination in the tuple space are defined outside the
agents involved.

A large portion of the community considers interaction protocols, i.e. prede-
termined patterns of interactions, as a means to coordinate MAS [9]. It is the
coordination model proposed by FIPA to be supported by FIPA-compliant APs.
Internally, as part of their behaviour, interacting agents control that the message
exchange complies the protocol rules. In order to support the social ability of
interacting agents, exchanged messages include the intention of the agent (by
means of the so-called performative). Unlike tuple-based coordination, the ini-
tiator agent needs to know the identity of its counterpart in the interaction. To
support this feature, the AP provides an agent directory facilitator.

Table 1 summarises the main features of MalacaTiny-Sol and SAPERE,
showing that they also differentiate in the distribution infrastructure. However,
they have some features in common such as the agent architecture type, and
some of the devices and network technologies they support.

Table 1. Overview of MalacaTiny-Sol and SAPERE.

Feature MalacaTiny-Sol Sapere

Agent architecture Reactive Reactive

Model of coordination FIPA Tuple space
Supported devices J2SE-enabled, Android- J2SE-powered, Android-

enabled, J2ME-enabled, powered
Sun SPOT, Waspmote
Network technologies 802.11, 802.15.1, 802.15.4 802.15.1
Distribution Infrastructure Centralized Distributed

Despite the agents of both systems have reactive architectures, their internal
design is quite different. The design principle of MalacaTiny is the enhancement
of the internal agent architecture, by means of separating the domain specific

4 Inmaculada Ayala et al.

functionality from other concerns, mainly related with the coordination and
exchange of messages. MalacaTiny agents interact according to the FIPA speci-
fications and standards. In SAPERE, agents have a simpler design because the
tuple space embeds most of logics of coordination.

Regarding the requirements of pervasive systems, these approaches focus
on different issues. Principally, MalacaTiny-Sol deals with the heterogeneity of
devices and communication technologies presented in many pervasive computing
scenarios. While SAPERE provides a natural metaphor to develop applications
that are distributed in a physical space. More details on these technologies are
provided in the following subsections.

2.1 MalacaTiny and Sol

MalacaTiny-Sol is a FIPA compliant agent system, which adapts and extends
standard agent technologies to facilitate the development of pervasive applica-
tions. In this system we can distinguish two parts: MalacaTiny [10], that allows
to develop agents for lightweight devices; and Sol [7], which is the middleware
where these agents are deployed and provides a set of (FIPA) services for those
agents (i.e. the AP).

MalacaTiny is an implementation of the Malaca agent architecture [11] for
lightweight devices. This agent technology is based on component and aspects?,
which promote the separation of application specific functionality from com-
munication related concerns. In general, in Aspect Oriented (AO) approaches,
crosscutting concerns are identified as those concerns that appear to be dispersed
in different components of the system, usually tangled with other functionali-
ties. These crosscutting concerns are encapsulated as independent entities named
aspects. At compilation or runtime, the aspect behavior is again composed at
specific points of the system execution described by the so-called join points in
a process known as weaving.

In MalacaTiny these crosscutting concerns are identified in the context of
a FIPA-compliant interaction, and are related with the specific functions or
task that the agent has to perform in order to coordinate with other agents.
The considered crosscutting concerns (which are then encapsulated as aspects)
are: the formatting of messages (Representation aspect), the distribution of the
messages using different communication means (Distribution aspect), and the
coordination, both internal (Context-awareness aspect) and external (Coordina-
tion aspect) for the agent. The join points where these aspects are invoked are
the reception and the sending of a message, and event throwing. Aspects are
composed at runtime by an aspect weaver ruled by a set of explicit composition
rules defined outside of the aspects involved.

The different versions of MalacaTiny are embedded in Android devices, mo-
bile phones with MIDP profile, desktop computers, Sun SPOTs [12] and Libel-
lium waspmotes [13]. MalacaTiny agents can be executed on top of different APs

3 Aspect-Oriented Software Development http://aosd.net/

Developing Pervasive Agent-based Applications 5

and using different transport protocols, by simply plugging in the correct distri-
bution aspect. For instance, by using the Jade-Leap plug-in, MalacaTiny agents
can communicate with other agents registered in this platform. However, current
APs for lightweight devices are not entirely capable of managing both device and
transport protocol heterogeneity, and have strong limitations for ensuring com-
munication interoperability in pervasive systems. The Sol AP has been created
to cope with these limitations.

FIPA-based agents require a set of services from the FIPA AP that are related
with the transportation of messages between agents, and with the discovering of
agents and services. Sol is a FIPA-compliant AP specially well suited to develop
applications in the Internet of Things. This AP acts as an agent-based middle-
ware that provides a set of services for the agents and behaves as a gateway to
support communication heterogeneity. Specifically, the Sol AP supports:

— The registering and discovering of agents (Agent Management Service-AMS).

— The registering and discovering of services (Directory Facilitator-DF).

— The registration and membership of groups (Group Management Service -
GMS).

— The message communication service (MTS), which allows the communica-
tion between agents registered in the AP, extended to facilitate the group-
based communication.

Note that the AMS, DF and MTS are classical services provided by any AP, but
the MTS is extended to support group communication in IoT environments, in
conjuntion with the GMS.

Therefore, the main features of this AP (see Fig. 1) are the support for
communication of agents in heterogeneous devices, coping with heterogeneous
transport protocols (WiFi, Bluetooth and ZigBee) and group communication
often required by pervasive systems. Additionally, Sol has remote nodes (Sol
Clients in Fig. 1), which communicate with the node in which Sol is running.
The development of these clients has been necessary for the implementation
of applications distributed in wide areas. Sol clients support devices with low-
range communication technology such as mobile phones that use Bluetooth, Sun
SPOTs and Libellium waspmotes. These clients can run in desktop computers
and Meshlium Xtreme routers [14].

A group is a way to identify a set of agents that are interested in the same
type of information. Forming groups enables the Sol AP to implement multicast
communication efficiently, which facilitates the distribution of the same infor-
mation to clustered components of the system. Groups are defined attending to
the communication needs of the applications, and agents join and leave these
groups at runtime (by the GMS). Groups are usually composed of agents that
share some feature (e.g. they are embedded in the same type of device) or play
the same role in the MAS (e.g. agents that provide the same service).

In summary, the combination of MalacaTiny and Sol (MalacaTiny-Sol) is a
system to deal with the requirements imposed by pervasive computing systems.
MalacaTiny agents can take advantage of using the Sol AP, so that they can com-
municate through different transport protocols and send multicast messages to

6 Inmaculada Ayala et al.

Sol Client

.

&

Sol Client

<))

@'V@l

|F'MT

TCP uopP

RFCOMM uorP

P

L2CAP IPvé

m@

.+ IEEE802.11 || [EEE 802.15.1 H IEEE 802.15.4

f@ Sol

Fig. 1. Schema of the communication in Sol agent platform.

a group of related agents. With this approach, the functionality of the pervasive
system is decomposed in a set of MalacaTiny cooperating agents that use the Sol
AP for the location and communication between agents. Sol enables interaction
via a centralized registration and discovery services. Agents communicate via
message exchange and concerns are separated by aspect-based programming via
the MalacaTiny framework.

2.2 The SAPERE middleware

SAPERE follows a rather different approach for the development of Multi-Agent
applications. SAPERE models a pervasive service environment as a non-layered
spatial substrate, laid above the actual pervasive network infrastructure. The
substrate embeds the basic laws of nature (or eco-laws) that rule the activities
of the system. It represents the ground on which the components of the pervasive
service ecosystem interact and combine with each other. All “entities” living in
the ecosystem will have an associated semantic representation: Live Semantic
Annotations (LSAs), which is a basic ingredient for enabling dynamic unsuper-
vised interactions between components. From an implementation point of view,
SAPERE relies on lightweight and minimal middleware infrastructure (see Fig.
2). In particular, it reifies LSAs in the form of tuples, dynamically stored and
updated in a system of highly-distributed tuple spaces spread over the nodes
of the network [15]. Each LSA acts as an observable interface of resources and
service of the components. LSAs of different components can bind with each
other to enable interactions. The eco-laws are the rules driving the dynamics of
the ecosystem. In particular, eco-laws perform pattern matching operations on
the set of LSAs that are in the ecosystem to: (i) create bindings among LSAs,
thus enabling interactions between components, (i:) diffuse LSAs across the spa-

Developing Pervasive Agent-based Applications 7

tial substrate, (iii) aggregate LSAs together, to compute summaries of the LSA
population, (i) delete LSAs that are not useful.

Propagation
to neighbour
nodes of
LSAs

LSA tuple space ‘ l ‘
LY [il
[\
oo)

Fig. 2. The SAPERE Conceptual Architecture

The active components of the ecosystem (whether services, software agents,
sensing/actuating devices, or data sources) express their existence via LSAs
injected in the local tuple space associated with their node. Then, they indirectly
interact with each other via the tuple space by observing and accessing their own
LSA.

In SAPERE, we enforce a notable separation of concerns between appli-
cation’s computation and interaction. Computation (i.e., the main application
business logic) is coded in the SAPERE agents using standard software engineer-
ing methodologies. Interaction consists of writing agents’ LSAs and managing
their evolution over time. Specifically, programmers have to specify the format
of agent’s LSAs so that they match with eco-laws, enabling eco-law functionali-
ties: bonding, spreading, aggregating and decaying. In more detail, the eco-laws
represent sorts of virtual chemical reactions between LSAs, and get activated by
processes embedded in tuple spaces (which make SAPERE tuple spaces different
to traditional tuple spaces). Such processes evaluate the potential for establish-
ing new chemical bonds between LSAs, the need for breaking some, or the need
for generating new LSAs by combining of existing ones. In addition, to support
distributed spatial interactions, eco-laws can enforce the diffusion of LSAs to
spatially close tuple spaces, e.g., for those tuple spaces that are neighbor of each
other in the network, according to specific propagation patterns (gradient-based
diffusion, broadcast, or multicast).

In summary, in SAPERE agents, interactions are mediated by the set of
LSA spaces where inject LSA in the system, and subscribe to the arrival of
LSAs. LSAs spread across the network enabling distributed operations.

3 Modeling pervasive scenarios

As stated in the introduction, in order to illustrate and evaluate how both ap-
proaches work in pervasive systems, we will use an IM, which put together dif-

8 Inmaculada Ayala et al.

ferent case study applications. Modern museums’ buildings usually include a
considerable number of displays and sensors distributed in their rooms, with the
goal of providing valuable information to staff and visitors. What characterizes
the IM as a pervasive system is the use of sensors and personal devices of people
to enhance their experience during the visit. Moreover, the information provided
by these devices can be used to improve the efficiency of the running of museum.
Specifically, we are going to model scenarios of information provision (Subsection
3.1) and emergency evacuation (Subsection 3.2) in the IM.

Information provision is a very important class of applications to enrich the
IM experience. In particular we will focus on: (i) monitoring of the environmental
conditions of a room; (ii) controlling the number of people that are currently in
the museum; (iii) and the distribution of exhibit information according to a
user profile. The first two scenarios are services of interest for the security staff
members, while the third is service targeted for museum visitors.

In addition, we are going to model a service that contributes to the evacuation
of the building in case of an emergency. This is a a service of great importance in
crowded buildings like museums. This problem can be resolved in very different
ways according to the characteristics of the two approaches used. In order to
illustrate the advantages and disadvantages of both, we are going to consider
two situations: there is just one emergency exit; and in the case of there are
more than one emergency exit.

The design of the above scenarios in MalacaTiny and SAPERE has some
points in common. In both systems agents are service providers and consumers
and they interact in order to provide services to the people in the museum. Other
point in common is in both approaches each guard and visitor have personal
agents that are running in their personal devices, and which provide them with
the IM services. Additionally, both designs include an agent that represents each
exhibit in the museum, and provides information about it. The last point in
common is the physical distribution of the middleware because in both solutions
they are distributed throughout the building. However, Sol follows the schema
depicted in Fig. 1 with a main node a multiple clients and SAPERE follows
the schema of Fig. 2 with multiple SAPERE nodes deployed in each room and
interconnected.

The main differences are found in the type of agents considered and in the
internal design of these agents. In addition to the agents previously mentioned,
the MalacaTiny-Sol system incorporates agents to sensors, while the SAPERE
system considers a specific agent for counting the number of visitors around a
SAPERE node. Although the details of the internal design of agents for the
different scenarios will be described in the following subsections, it is important
to emphasize that the design of MalacaTiny agents is based on component and
aspects, which specify the application functionality and interaction with other
agents. So, the description of the architecture of these agents consists of describ-
ing the set of components and aspects that compose an agent, and exactly how
they relate. However, agents in SAPERE have a very simple design (see Fig. 3)
and their behavior emerge from the interactions with the SAPERE node. This

Developing Pervasive Agent-based Applications 9

interaction depends on the LSAs that the agent injects into the LSAa space and
the result of the application of eco-laws to these LSAs. So, the description of
these agents is given in terms of injected LSAs and the behavior of the agent
when these are bonded, read, removed or updated.

Gad GuardU
| +oetMisitorrtoen) - void | +ehostdstoturen rom:int) < void
Scperefgent +gaErndronrnentsl Condtiors]) void +ppdeteEmronrent] ver : Sring, vel : Sing) void
+satmemency() - woid
) veid
~orRorof b ; LSA) s vaid .
oo b 1 LSA) vaid Courter\isitor
~rfErove(b 1 LSA) woid
irjedt{ | : LSA) - void
|| o
i : vl - .
Hramove(| LA) vaid M
Visitor +thoaFavonteBdibt(f : LSA) :void
L T anatifEnemenayBit b LSA) waid

Fig. 3. UML class diagram of SAPERE agents in the Intelligent Museum

3.1 Information provision scenarios

Information provision is a very important class of applications to enrich the IM
experience. In particular we will focus on: (i) monitoring of the environmental
conditions of a room; (ii) controlling the number of people that are currently in
the museum; (iii) and the distribution of exhibit information according to a user
profile.

Designing applications with MalacaTiny-Sol In these scenarios agents
interact to provide information to their corresponding users. In Malacatiny-Sol,
agents exchange messages through the Sol AP. This means that the four types of
agents that compose the MAS have a distribution and a representation aspect to
send and receive messages using the Sol AP named SolPlugin and Representation
(see Figures 4 and 5). To make the interaction between agents more efficient, we
define and use groups (introduced in Subsection 2.1). As stated before, with the
GMS provided by the AP we can register different groups in order to support
the application requirements: one group includes all the visitor agents registered
in the AP; another group comprises all the sensor agents that are deployed in a
specific room (so there is a group formed for each room with sensors installed);
and the last group is for the exhibits that are located in an specific room (so
there is a group formed for each exhibition room).

10 Inmaculada Ayala et al.

«aonponent» | «comnponent» » «oonponent» «aspect» «aspect»
GuardUl Timer jonProvi Evacuahaﬂan ErmgatyPrdmd ULpdala'
i x \

«aspect» «aspect» «aspect» «aspe:» «aspect»

Guerdigert] || iovGounter| | EnvironmmentiVibritaring) | Represetation) | Locationpcater] | SolPugin

Fig. 4. UML class diagram of the agent for guards.

Environmental monitoring application. In order to monitor the environmental
conditions of rooms, several sensors with agents embedded inside are deployed
in them. At initiation, each agent joins the group corresponding to their room.
When a security staff member wants to know the conditions in one of the rooms,
his agent interacts with the group of sensor agents associated with the room, in
order to gather up-to-date information and present the results to the security
guard. The implementation of this scenario requires the addition of two aspects
and one component (see Fig. 4) to the security guard agent: the EnvironmentMo-
nitoring aspect, which requests the information from the sensor group, gathers
the answers and updates the internal knowledge of the agent with it; the Ul-
Updater aspect, which updates the user interface with the new environmental
results when it observes a change in the agent knowledge; and the GuardUI com-
ponent, which implements the user interface. Components are added to the agent
architecture with an identifier using the method addComponent (see Fig. 6) and
aspects are added means of aspect composition rules. As stated before, these
rules set how aspects are composed at specific points in the agent execution.

«component» | | «conponenty| | «conponent» | | «conponenty | «conrponent> «aspect» «aspect»
LocationProvider| | UserProfile | RoutePlanner,| Timer Visitorll || BxhibitRecommender| | SolPlugin
‘ 1 ‘ﬁ ‘X { ‘X |
«aspect» «aspect» «aspect» «aspect» ‘ «aspect»
\isitorAgent
RoutelVbnitor:| VisitorGCounter| | LocationUpcdater: Representation EmergencyProtocol

Fig. 5. UML class diagram of the agent for visitors.

Visitor counter application. In order to determine the number of visitor in the
IM, the agent for guards must interact with each visitor agent. To make this
interaction more efficient, again, we make use of groups. In this case, the guard
agent sends an “is alive” request message to the visitor agents group previously
defined, and it counts the responses over a time span. To accomplish this task,
the security guard agent has to include new components and aspects in its ar-
chitecture: the VisitorCounter coordination aspect, which collects the answers

Developing Pervasive Agent-based Applications 11

from visitors; and Timer component, which determines the time span of the col-
lection. On the other hand, the design of the agent for visitors (see Fig. 5) also
includes the aspect VisitorCounter that joins the corresponding group at initi-
ation, intercepts the “is alive” request and answers the request of the security
agent.

In MalacaTiny, interaction protocol behaviors are implemented as finite state
machines whose transitions are driven by internal events or received messages,
and that cause the execution of plans. In the case of VisitorCounter protocol
(see Fig. 7 left side), transitions are driven by events from the user interface
that indicate that user requests the number of visitors (CounterRequestEvent),
messages from visitor agents and the internal event that indicate the end of the
time span (TimerEvent). Plans of this protocol are: SendGroupMessage that
sends a message to the group of visitors; ReceiveAnswer that processes the an-
swer from visitors and counts the number of visitors (see Fig. 7 right side); and
PresentResults that presents the results to the security guard.

public class GuardAgent extends Agent{
protected void setup (){

addComponent(“UI",guardUl);
addComponent(“Timer”,new Timer());
addComponent(“GPS”,new LocationProvider());
addComponent(“Evacuation”,new EvacuationPlanning());

}

protected void compositionRules(){
addCompositionRule(SND_MSG, Role.REPRESENTATION, ..., AuroraRepresentation.class.getName(),...);
addCompositionRule(SND_MSG, Role.DISTRIBUTION,, SolPlugin.class.getName(), true,....);

addCompositionRule(RCV_MSG, Role.REPRESENTATION,..., AuroraRepresentation.class.getName(),....);
addCompositionRule(RCV_MSG, Role. COORDINATION,, VisitorCounter.class.getName(),....);
addCompositionRule(RCV_MSG, Role. COORDINATION,, EnvironmentMonitoring.class.getName(),....);

Fig. 6. Partial code of the agent for guards in MalacaTiny.

Information provision according to user profile application. This third scenario
provides visitors with information about exhibits in the room where they cur-
rently are. The presented information depends on the user personal profile. This
scenario requires the visitor agent to know the room where the user is, in order
to interact with the agents for exhibits located in the room. The location of the
visitor can be obtained internally by the agent using different mechanisms like
the communication network [16]. Each time the visitor moves to another room,
the agent changes the group of exhibit agents it has to request the information
from. For this purpose, the visitor agent sends a message to this group and when
it receives the answers from the exhibit agents, it analyzes the profile of the vis-

12 Inmaculada Ayala et al.

itor, and filters the information received to show the information of interest to
him/her.

Visitor Counter Protocol Receive answer from visitor
public class VisitorCounter extends CoordinationAspect{ public class ReceiveAnswer{
protected void setup(){ protected void setup(){
ProtocolState initial=new ProtocolState (this,"initial"); ACLMessage msg=(ACLMessage)getinput();
ProtocolState reception=new ProtocolState(this,"reception"); Integer visitorCounter=(Integer)getAgent().
getKnowledge(“visitorCounter”);
InstancePattern counterRequest= visitorCounter++;
new InstancePattern(new CounterRequestEvent()); }

InstancePattern timerEvent=new InsancePattern(new TimerEvent()); | }
MessagePattern counterProtocolPattern=new MessagePattern();
groupProtocolPattern.setProtocol(“VisitorCounterProtocol”);

registerTransition(counterRequest, initial,
reception,SendGroupMessage .class.getName());

registerTransition(counterProtocolPattern, reception, reception,
ReceiveAnswer.class.getName());

registerTransition(timerEvent, reception, initial,
PresentResults.class.getName());

setlnitial_state(initial);

Fig. 7. Partial codes of the VisitorCounter protocol (left) and the ReceiveAnswer plan
(right) in MalacaTiny.

This application is implemented in different aspects of the visitor agent (see
Fig. 5): The LocationProvider component provides the current location of the
agent, notifying a change in the user’s position by throwing internal events; The
LocationUpdater aspect takes the location information, processes it and updates
the internal knowledge of the agent with it; and ExhibitRecommender aspect
ensures that each time the user changes the location to a different room, it
interacts with the exhibit agents to gather information and recommend specific
exhibits to the user (according to the information in the UserProfile component).

Designing applications with SAPERE The communication of SAPERE
nodes is based on Bluetooth and entities connect to it on a proximity basis.
This means that any non mobile element of the IM, like sensors, is automati-
cally connected to the closest SAPERE node. Additionally, in the case of agents
embedded in mobile personal devices, they are continuously connecting and dis-
connecting nodes depending on their proximity to them.

Environmental monitoring application. Using SAPERE, sensors accomplish the
environmental monitoring and provide it via the injection of LSAs in the SAPERE
node that they are connected to. When a guard requests this information, his
agent injects LSAs to subscribe to information about environmental conditions.
When eco-laws are fired, these LSAs are bonded to he LSAs injected by sensors
and the results are presented to the guard. This application is modeled differ-
ently when the security guard is not in the room from which he wants to know

Developing Pervasive Agent-based Applications 13

the environmental conditions. To do this, it is necessary to have specific agents
to gather the conditions and send the information to the remote space when is
requested. This procedure is illustrated in the following scenario, when the guard
agent wants to know the number of visitors in the IM.

Visitor Agent Guard {
<LSA name="visitor” value="inma"/> int sentLSA,recLSAvisitorCounter;
Guard onBond(LSA b) {
if(b.name.equals(“number-visitor”){
<LSA name="museum-visitor” value="0"/> visitorCounter=visitorCounter+b.value;
<LSA name="number-visitor” value="*"/> recLSA++;
<LSA name="number-visitor” value="+" updateLSA(name="museum-visitor”,value=counter);
spread="direct” destination="main-hall” if(recLSA==sentLSA){
source="room5” .. /> updateUl(“museum-visitor”,visitorCounter);
<LSA name="number-visitor” value="*" ...
spread="direct” destination="room3" }

source="room5” ... />

Fig. 8. Injected LSAs (left) of agents for visitors and guards and partial code onBond()
method (right) of the agent for guard in the number of visitors scenario.

Visitor counter application. The modeling of this solution in SAPERE requires
the collaboration of three types of agents: security guards, visitors and agents
that count the number of people around a SAPERE node. To count all the visi-
tors in the IM it is necessary to know the number of visitors around a SAPERE
node and later, to add this information. The interaction between agents for visi-
tors and visitor counter agents is used to determine the number of visitors around
a SAPERE node. On the one hand, agents for visitors inject an LSA indicating
the presence of their users around the node (see Fig. 8 left) and on the other
hand, visitor counter agents are subscribed to this information and update an
LSA that contains the current number of visitors around the node (see Fig. 9).
These agents increase the counter when LSAs are bonded (user is in the room
where the SAPERE node is deployed) and decrease it when they are removed
(user leaves the room).

The process for the addition of this information starts with a request of
a security guard. Then, his/her agent injects LSAs to request the information
injected by visitor counter agents, to do so it has to inject an LSA for each
SAPERE node with direct spreading to these nodes (see Fig. 8, left). When
these LSAs arrive at their destination, they are updated with the information
of the number of visitors and sent back to the node of the guard agent. In this
node the agent for the guard has injected LSAs to add the values and when it
receives all the answers it presents the results to the guard (see Fig. 8, right).

Information provision according to user profile application. The provision of
information according to the user profile in SAPERE has an advantage over

14 Inmaculada Ayala et al.

- Agent VisitorCounter {
Visitor counter

int numberVisitor;
<LSA name="user” value="*"/> umber\Visitor;
<LSA name="number-visitor” value="0"/> onBond(LSA b) {

if(b.name.equals(“number-visitor”){
updateLSA(spreading="direct”,destination=b.origin);
telse{
numberVisitor++;
updateLSA(number-visitor=numberVisitor);
}
}

onRemove(LSA b){
if(b.name.equals(“number-visitor”){
numberVisitor--;
updateLSA(number-visitor=numberVisitor);

Fig. 9. Injected LSAs (left side) of the visitor counter agent and partial code of on-
Bond() and onRemove() methods (right side) of the visitor counter agent.

the solution proposed with MalacaTiny-Sol because it has not to rely on third
components to provide the position of visitors in the IM. When a visitor enters
to a new room, his/her agent injects an LSA in the SAPERE node with the
personal preferences of the user. On the other hand, agents associated to exhibit
have injected LSAs with information about the exhibit. When eco-laws are fired,
the user’s LSA is bonded to the exhibit LSAs of interest for him/her and the
information is presented to the visitor.

3.2 Scenarios of Emergency Evacuation Planning

In this section, we are going to model a service that contributes to the evacuation
of the building in case of emergency in both approaches. In order to illustrate the
advantages and disadvantages of both, we are going to consider in this scenario
two situations: if there is just one emergency exit; and when there are more than
one emergency exits available.

Designing applications with MalacaTiny-Sol

One emergency exit application. The evacuation starts when a member of the
security staff detects an emergency situation. Firstly, when an emergency is de-
tected, the security guard agent of the person that detects it, notifies all the
people in the IM that there is an emergency situation. To make this notification
more efficient, group-based communication is used again. In this case a message
is sent to the group of visitor agents and another to those composed by secu-
rity agents. With the information provided in the message, visitor agents plan
how to get to the emergency exit while avoiding the site of the emergency. Se-
curity guards agents use this message to inform the security staff of where the
emergency exists and what kind of emergency it is.

Developing Pervasive Agent-based Applications 15

In order to implement this behavior in the security guard agent, new aspects
are added (see Fig. 4): the joint work of the LocationProvider component and
the LocationUpdater aspect estimates and updates the user position that is go-
ing to be used in the emergency message; and finally, the EmergencyProtocol
aspect continues with joining the agent to the group of security guard agents,
sending an emergency message to the two groups of agents and also receives
emergency messages. The design of the visitor agent also requires more elements
(see Fig. 5) to manage an emergency situation: the EmergencyProtocol aspect
receives emergency notifications from security guards and updates the internal
knowledge of the agent activating an emergency situation; when this occurs, the
RouteMonitor aspect requests a route from the RoutePlanner component and
when the route to the emergency exit is generated, it guides the user to the exit
using his/her current location.

Multiple emergency exits application. When there is more than one emergency
exit to choose from the situation is similarly handled. As in the previous case, the
corresponding security agent sends the message to the group of security agents
with the same result. Additionally, it has to determine the number of visitors and
their position in the IM. In order to get this information, a message requesting
the position of the visitor agents is sent using the group-based communication.
When the security agent receives the information it assigns an emergency exit
to the visitor according to their current position and the number of visitors in
the same room (in order to ensure speedier the evacuation). To implement this
behavior the design of the agent for visitors is not modified, but the security
guard agent needs to change the behavior of the EmergencyProtocol and add a
new component for planning the visitors evacuation (EvacuationPlanning).

Designing applications with SAPERE

One emergency exit application. The emergency planning in SAPERE uses the
work of the spread and aggregate eco-laws to enable a field-based coordination
mechanism [17] that notifies of the emergency and indicates the exit path si-
multaneously. To trigger this process the agent associated with the guard has to
inject an LSA in the SAPERE node located at the emergency exit. This LSA
is spread to the other nodes hop-by-hop starting with those that are directly
connected to the space in which the LSA was initially injected. When this LSA
is spread to other SAPERE nodes, the attribute field is set to the previous node
and the hop counter is increased. If multiple emergency LSAs are spread to the
same SAPERE node with different origins (i.e. different values of previous at-
tribute), when the aggregate eco-law is fired, only the LSA with the minimum
hop-counter remains (see attribute aggregation in Fig. 10). In order for the visi-
tor to receive the emergency notification, his/her associated agent has to inject
an LSA in order to receive emergency notifications. The bonding of this LSA
enables the planning of the emergency route step by step. Each time the LSA
is bonded, the visitor receives a notification of the next room that he/she has

16 Inmaculada Ayala et al.

to reach to get to the exit of the building. When the user reaches the specified
room, the same process is repeated. In this way, visitors find the emergency exit.
The application of the aggregation eco-law ensures that visitors always follow
the path with the minimum number of hops to the exit.

Guard Agent User {
<LSA name="emergency” spread="diffuse” max-
hop="10" hop_count="0" aggregation="min"
previous="room13"/> onBond(LSA b) {
if(b.name.equals(“emergency”){
Visitor updateUl(“emergency”,b.previous);
<LSA name="emergency” previous="*" ... /> }

Fig. 10. Injected LSAs (left) of agents for visitors and guards and partial code on-
Bond() method (right) of the agent for visitors in the emergency evacuation.

Multiple emergency exits application. In the case of multiple emergency exits,
security guard agents inject an LSA with the same format as in the previous case
and the path with the minimum number of hops is also ensured by aggregation
eco-law. The problem is that with this schema we cannot control the number
of people that are sent to the different exits. This is because we cannot ensure,
on the one hand the minimum path (applying the aggregation eco-law) and on
the other hand, to have multiple options that can be used for a specific agent to
send a person to one exit or another.

4 Comparison

In this section we are going to evaluate and compare the systems resulting from
the design of the scenarios described in the previous section and modeled using
MalacaTiny-Sol and SAPERE. The reason for this comparison is to measure the
advantages and the benefits of both approaches from a software engineering point
of view. Specifically, this assessment focuses on the design of the security guards
and visitor agents. For the evaluation, we are going to use a combination of the
frameworks provided by [18,19]. On the one hand, the work in [18] provides an
architectural metric suite that is being widely used to measure the separation
of concerns in software systems. On the other hand, the paper [19] presents a
framework for the evaluation of ubiquitous computing systems, which can be
used to evaluate pervasive applications as is our case study. Specifically, we are
going to evaluate: (i) Separation of Concerns (SoC) - 4.1; (ii) Coupling and
Cohesion - 4.2; (iii) Adaptivity - 4.3; (iv) Robustness - 4.4; (v) Scalability - 4.5;
and (vi) Privacy - 4.6.

In order to implement the metrics for measuring SoC, coupling an cohesion,
we are going to use common concerns of MalacaTiny and SAPERE. They are

Developing Pervasive Agent-based Applications 17

representation, distribution, coordination, context-awareness, bonding, compu-
tation and spreading. The mapping between them is depicted in Fig. 11.

Application-
Specific

Computation

Represen
tation

Bonding Spreading | Aggregation | Decay

Fig. 11. Mapping between MalacaTiny (circles) and SAPERE concerns (rectangles).

4.1 Separation of Concerns

SoC is a well-established principle in software engineering which aims to im-
prove the internal modularity and maintainability of the crosscutting concerns
of a software design. A crosscutting concern is a special concern which natu-
rally cuts across the modularity of other concerns. Without proper means for
separation and modularization, crosscutting concerns tend to be scattered and
tangled up with other concerns. The natural consequences are reduced compre-
hensibility, ease of evolution and reusability of software artifacts, which limit the
adaptability, robustness and scalability of the software system.

A way to measure the degree of SoC is to quantify the diffusion of a concern
over components, interfaces and operations. Concern Diffusion over Architectural
Components (CDAC), Interfaces (CDAI) and Operations (CDAO) measure the
degree of concern scattering at different levels of granularity. The results of the
SoC metrics are obtained for each concern of interest in the system. The metrics
for computing the separation of architectural concerns are applied to calculate
the degree to which a single concern or property of the system maps to the
architectural components.

The results of the assessment show SAPERE scores better for CDAC and
CDAI, while MalacaTiny is better for CDAO (see Table 2). In SAPERE, the
agent class encapsulates all concerns but bonding and spreading, that are in the
SAPERE node, so their values for CDAC are 0 or 1. In MalacaTiny each concern
is encapsulated as an independent aspect, and there is a coordination aspect for
each interaction in which the agent participates and context aware behavior
(see Figures 4 and 5). The results for the bonding concern for MalacaTiny are
because this concern includes coordination, context-awareness, distribution and
representation (see Fig. 11). Additionally, the agent interaction is supported in
MalacaTiny by 1 interfaces and in SAPERE by 1.

18 Inmaculada Ayala et al.

Table 2. SoC measurements for MalacaTiny-Sol (M-S) and SAPERE.

CDAC CDAI CDAO

Concern
M-S SAPERE M-S SAPERE M-S SAPERE

Context-awareness 2.5 1 2 1 2 9.5
Coordination 2.5 1 2 1 3 9.5
Distribution 1 1 2 1 2 4
Representation 1 1 1 1 2 4
Bonding 7 0 2 0 9 0
Computation 5 1 2 1 5 9.5
Spreading 1 0 2 0 2 0
Average 2.85 0.7 1.85 0.7 3.57 5.2

Finally, the interception point model of MalacaTiny and the number of meth-
ods that use SAPERE to receive results of the eco-laws application explain
CDAO results. MalacaTiny has 3 interception points and each aspect has at
least 1 method to access the aspect behavior. For example, the coordination
aspect requires 3 operations because it is affected by 2 interception points (i.e.
reception and sending of the messages), and has 1 method to access its behavior.
On the other hand, SAPERE agents have 4 four methods to receives results from
the SAPERE node, 4 operations to interact with it and additionally, we have
to consider methods in the agent class that call to these operations (see Fig. 3).
For example, for the computing concern, the agent for guards scores 10 and the
agent for visitors 8.

The results of these metrics describes the main features of the architectures
of agents in FIPA-based and tuple-based approaches. Agents in FIPA have a
more complex design because the negotiation (coordination in tuple-based ap-
proaches) is accomplished inside the agent, so CDAC and CDAI is always higher
in these approaches. The results for CDAO are a consequence of the complex in-
teraction that tuple-based agents have with their middlewares. Therefore, despite
MalacaTiny-Sol scores are good, considering that it is a FIPA-based approach,
SAPERE gets a better SoC.

4.2 Coupling and Cohesion

Coupling and cohesion are two quality attributes of a software design that reflect
the quality of a good modularization. Coupling refers to the level of interdepen-
dency among the modules (e.g. components) and cohesion is the level of uni-
formity of concerns of a single module (i.e. the degree of relatedness among the
elements -attributes, methods- of a component). A high degree of coupling dras-
tically reduces component reuse, which in turn means poor adaptability. Low
cohesion means a concern is spread over different modules, and its evolution as

Developing Pervasive Agent-based Applications 19

an independent entity will therefore be very difficult to manage. Consequently, it
is important to minimize coupling and maximize cohesion in the system design.

The coupling metrics measure the number of components connected to each
other. Coupling is evaluated using the Fan in and Fan out metrics for each ele-
ment of the SAPERE and MalacaTiny agents. These metrics count the number
of conventional components which require services from the assessed component
(Fan in metric) and the number of components from which the assessed compo-
nent requires services (Fan out metric).

Table 3 shows the average for coupling and cohesion measurement per com-
ponent in both architectures (rows labeled “Average”) and the percentage dif-
ference of each metric between MalacaTiny-Sol and SAPERE (row labeled as
“Percentage Difference”). The positive values of the “Percentage Difference”
means lower results for SAPERE, while negative results means lower results for
MalacaTiny-Sol. In this case, SAPERE scores better for Fan in because SAPERE
agents directly perform less functionality than MalacaTiny agents. On the other
hand, MalacaTiny scores better for Fan out because the application specific
components of agents have a lower value for this metric.

Table 3. Coupling and Cohesion measurements for MalacaTiny-Sol and SAPERE.

MalacaTiny-Sol Fan in Fan out LCC

Application specific components 1 0.55 0

Context-awareness aspect 1 1 3
Coordination aspect 1 1 3
Distribution aspect 1 1 2
Representation aspect 1 1 2
Core agent 9 1 0
Average 2.33 0.925 1.66
SAPERE Fan in Fan out LCC
Application specific components 1 1 0
Core agent 1 1 5
Average 1 1 2.5
Percentage difference 80% -7.79% -40%

Cohesion is measured using the Lack of Concern-based Cohesion (LCC). This
metric counts the number of different system properties addressed by each class
(in SAPERE agents), components and aspects being considered (in MalacaTiny
agents). For this metric MalacaTiny scores better (see Table 3). This is be-
cause the Malaca architecture focuses on the separation of concerns at the agent
level, while SAPERE applies the separation at infrastructure level. So, in the
SAPERE agent class all the concerns used in the evaluation are contained with
the exception of bonding and spreading that are in the SAPERE node.

20 Inmaculada Ayala et al.

With these results we can again see reflected, the architectural features of
both type of approaches. MalacaTiny successfully exploits its AO to offer agents
that scores better in Fan out and LCC. Scores of MalacaTiny mean a high
reusability of the internal components and aspects of agents of this scenario.
The good results of SAPERE are supported by the lower number of components
required to develop SAPERE agents. Therefore, on the one hand MalacaTiny-
Sol efficiently handles with complex designs, on the other hand, with SAPERE
such type of designs are not necessary.

4.3 Adaptability

The adaptability metric measures how the system adapts to changes that are
external to the application, i.e. changes in user preferences, devices and in the
physical space where the IM is located.

The recommendations of exhibits of interest for users depending on their
location in the IM (see Subsection 3.1) can be useful for new users and annoying
for users that know the exhibition. So, a useful functionality that the applications
can provide is disabling this service when users request it. To do so, MalacaTiny
requires to modify aspect composition rules (see Subsection 2.1) for not applying
EzhibitRecommender aspect (see Fig. 5). SAPERE accomplish the same task by
not injecting LSAs with user preferences. These procedures can be applied to
disable any service that agents provide or consume in both systems.

Sol offers to the agents deployed on it the possibility of changing the network
interface used for their connection to the AP. As stated before, Sol has support
for multiple network interfaces (see Subsection 2.1). An agent can connect to
Sol using a WiFi connection, but the agent can change the network interface to
Bluetooth in case of bad coverage. Accomplishing this task does not just require
a change in the composition rules. Additionally, the agent has to interact with
the AP in order to ensure that it remains in the same groups and provides the
same services.

Changes in the museum map have different consequences for the solutions
proposed in both approaches. In MalacaTiny, some of the agent services depend
on the component LocationProvider (see Figures 4 and 5). This component in-
forms the room where user is currently and depending on its implementation,
it is necessary its substitution. SAPERE agents rely on the location to provide
services too. The extension of the museum map requires the addition of new
SAPERE nodes to these new locations and a change of the routing tables of
some SAPERE nodes. The design of the agents remains the same, but the agent
for guards has to update its internal knowledge about the IM (see Subsection
3.1).

The modification of the map impacts the emergency evacuation (subsection
3.2) in MalacaTiny. In order to ensure a correct planning of the exiting route, it
is necessary to modify the RoutePlanner component inside the agent for visitors.
If the IM has a new emergency exit, it is also necessary to change the Fvacu-
ationPlanning component. On the other hand, in SAPERE, with the modified

Developing Pervasive Agent-based Applications 21

infrastructure, the implementation of the emergency planning inside agents re-
mains the same.

Table 4 summarizes the main changes in each of the agent systems to adapt
agents and infrastructures. In conclusion, both approaches (FIPA-based and
tuple-based) can easily adapt the set of services provided by their agents. Ma-
lacaTiny offers more possibilities to adapt the agent architecture. Finally, the
adaptation of location-aware services to changes in the physical space requires
an extra effort in MalacaTiny, in the case of SAPERE this effort is made at the
infrastructure level and requires only little modifications in agents.

Table 4. Issues to change when adaptation is required in MalacaTiny-Sol and
SAPERE.

Adapted issue Services provided Network interface Deployment space

MalacaTiny-Sol Composition Composition rules / in- Components and aspects
rules teraction with Sol that depend on location

SAPERE Injected LSAs Not possible SAPERE nodes

4.4 Robustness

While adaptability measures how the application deals with external changes,
the robustness metric measures how internal events affect the application or the
percentage of faults that are invisible to user. In both approaches there can
be faults both at application level and at infrastructure level. In the case of
the application level, if a security guard agent or a visitor agent stops, both
MalacaTiny and SAPERE users notice that something is going wrong. However,
if the agent that fails is an exhibit one, it only results in the information of
the associated exhibit not being presented to the user but the application keeps
running. This can also be applied to sensors (see subsection 3.1).

The robustness of the visitor counter scenario (see subsection 3.1) is similar
in both approaches. In the case of MalacaTiny-Sol, the group mechanism sup-
ports the provision of this function. Group communication principally uses IP
multicast, which is based on UDP at the application level and is an unreliable
transport protocol. This means that message reception is not ensured. This issue
can affect the accuracy of the number of visitors obtained in MalacaTiny-Sol.
In the case of SAPERE, counting the visitors depends on the visitor counter
agents deployed in SAPERE spaces. The accuracy of the information provided
by these agents depends on the coverage of the SAPERE spaces and the position
of the visitors in the IM. So, as in the case of MalacaTiny, the security guard
only receives an estimation of the number of visitors. Additionally, in SAPERE
if the visitor counter agent fails, the security guard agent will not receive the

22 Inmaculada Ayala et al.

information from the room where this agent was deployed. Therefore, the distri-
bution of the functionality between agents and AP in MalacaTiny-Sol provides
a more robust application.

At infrastructure level, SAPERE is more robust than Sol. The Sol AP usually
runs in a single node with multiple clients that depend on it (see Fig. 1), if the
AP fails then those agents cannot interact, register services and join groups and
the IM cannot offer services to any of its users. The restarting of the Sol AP
affects the entire MAS. However, the distribution of SAPERE nodes causes that
the failure of a node only affects users that are in the same room (see Fig. 2).
Additionally, if the node restarts, only the agents associated with this physical
space (agents for sensors, exhibits, to gather environmental conditions and for
counting visitors) are affected.

In conclusion, in the IM scenario the distribution of the functionality be-
tween agents makes the solution based on FIPA more robust. On the other
hand, at infrastructure level both middlewares are special cases. In the case of
Sol, their current implementation does not offer a robust infrastructure, but
other FIPA-approaches, like Jade, handle the eventual failure of the main node
of the middleware. SAPERE is a special case in tuple spaces, given that they
usually present a centralized distribution. Therefore, and in order to enhance
the robustness of these approaches, the infrastructure of Sol should be modified
to make it as robust as other FIPA approaches, in the manner that SAPERE
offers a more robust infrastructure, unlike similar coordination approaches.

4.5 Scalability

The scalability metric measures how the complexity of the system increases
when some feature is extended or the system must met a new requirement. In
agent approaches, the extension of a system means the addition of new agents
or the modification of an existing one. In this section, we are going to study
the scalability of these two agent systems, then studying the effort required to
extend the system.

The effort required to add a new agent in the MAS is related with the number
of elements that compose the agent and the component reuse. SAPERE agents
requires less elements (a mean of 12.5 in MalacaTiny vs. 2 in SAPERE) but the
component reuse is higher in MalacaTiny (3 in MalacaTiny vs. 0 in SAPERE).

The extension of an agent to meet new requirements is usually related with
the addition of new services to agents other than those which we have initially
considered in our design. In this subsection we are going to consider 3 kind of
services: (i) with a single provider, (ii) with multiple providers; and (iii) global
services. Service discovery, invocation and provision is easier in SAPERE because
of the application of the bonding eco-law. What in MalacaTiny-Sol is done in 3
steps (query the DF of the Sol AP, request the service and consume the service)
in SAPERE is done in 2 steps (inject the LSA and receive the service).

In MalacaTiny-Sol, the addition of a service with a single provider requires
the addition of new aspects and components, and the modification of the aspect
composition rules. In SAPERE, this requires the injection of new LSAs and the

Developing Pervasive Agent-based Applications 23

modification of the agent class to provide or consume the service. To promote
the code reuse in SAPERE, the class of the initial agent is extended. In both
approaches this extension just implies the modification of the core agent class,
however these modifications are easier in MalacaTiny because it ensures the
code reuse. To the contrary, the code reuse is more problematic in SAPERE,
and consequently so is the extension of the agent. This is because we cannot
extend the agent with services provided by more than one agent because multiple
inheritance is forbidden in Java. Moreover, to use directly the code is difficult
because this is spread between the different methods of the agent (see Table 2).

The addition of a service with multiple providers is different in both ap-
proaches. In MalacaTiny-Sol, agents need a protocol to select the most adequate
provider according to some criteria (e.g. using a FIPA Contract Net) which
makes the design of the coordination aspect more complex. On the other hand,
the case of SAPERE is simpler because in some cases is the LSAs space which
selects the most adequate service provider. If the selection criteria is numerical
and the most adequate service provider is that which has the minimum or the
maximum value, then the LSA space selects the most adequate service provider
means of the aggregation eco-law. If the criteria is not numerical and only im-
plies the existence of a specific feature, it is necessary to include this feature in
the LSAs that publish and request the service. If more than one LSA shares this
feature, one of them is randomly selected for bonding.

In the case of global services, i.e. services available in any room of the IM,
the design of the MalacaTiny does not require any special consideration, but the
the SAPERE solution must be modified. This was illustrated in the case of the
visitor counter application, that has to deploy purpose specific agents in each
SAPERE node. These agents gather the information related with the service
and send it (under request) to the interested agents.

The explanations in this section exemplify the work of both coordination ap-
proaches in scalability. Without a proper modularization that promotes the code
reuse, the addition of new agents requires less effort in tuple-based approaches
because the design of agents is simpler. On the other hand, the extension of
agents, which usually implies the addition of new services provided or consumed
by them, is usually easier to design in FIPA approaches, while in tuple-based
approaches the provision and consumption is easier. In the case of these two
agent systems, we can conclude that the solution provided by MalacaTiny-Sol is
more scalable. MalacaTiny offers a uniform solution for the extension of agent
capabilities and promotes software reuse which decreases the development effort.
The strongest point in favor of SAPERE is the development of services based
on local interactions which are provided and consumed means of the bonding
eco-law, which are very likely to be found in pervasive environments.

4.6 Privacy

The privacy metric evaluates the type of information that the user has to pro-
vide (and divulge) in order to profit from application, and the availability of the
user’s information, for other users of the system as third parties. In the scenarios

24 Inmaculada Ayala et al.

presented, users share three types of data information: presence, location and
personal profile. Table 5 depicts what kind of user information is shared by the
security guard agents (G) and the visitor agents (V) in the different scenarios.
According to the table, scenarios modeled in MalacaTiny-Sol require less infor-
mation to be shared (user profile remains inside the personal user agent) than
those modeled in SAPERE. Additionally, in the case of MalacaTiny the personal
information of the users is located in their personal devices, while in the case of
SAPERE this information is located in these devices and in SAPERE spaces,
where the information can be accessed (through bonding) by all the agents of
the IM.

Therefore, we can conclude that MalacaTiny-Sol scores better in privacy be-
cause users divulge less information to obtain value from the application and
the availability of the information to other users is lower. These scenarios il-
lustrates the work of FIPA-based and tuple-based approaches in privacy. Local
computation of FIPA approaches makes easier to ensure the privacy of users.

Table 5. Type of information shared by agents for guards (G) and for visitors (V) in
scenarios of the IM.

. MalacaTiny-Sol SAPERE
Scenario

Presence Location Personal Presence Location Personal

Environmental monitoring

Visitor counter \Y% A% G
Information provision \%
Single emergency exit G G,V

Multiple emergency exit G,V GV

5 Conclusion

In this paper we have presented the modeling of a classical pervasive scenario,
an IM, using two agent systems for pervasive computing, MalacaTiny-Sol and
SAPERE. The first one is based on FIPA interaction protocols and the second
one is based on tuple spaces. The resulting systems have been evaluated using
an architectural metric suite that measures SoC, Coupling and Cohesion, and
additionally, we have discussed other important concerns in pervasive systems
such as adaptability, robustness, scalability and privacy.

Results of the architectural suite are specific to this case study, but these
highlight the architectural features of both agent technologies and also support
the following argument. The benefits from both approaches for the development
of pervasive application are not only from their schemas of interaction, also from
their mechanisms for ensure SoC (i.e. AO vs. eco-laws) and how they adapt the
agent paradigm to pervasive computing (e.g. groups vs. distributed tuple spaces).

Developing Pervasive Agent-based Applications 25

In MalacaTiny-Sol, the design of the agents is more adaptable, scalable and
can ensure the privacy of users easily. FIPA-based approaches allow the set of
offered services to be modified by enabling or disabling behaviors that perform
such services. MalacaTiny-Sol does this efficiently even at runtime because these
behaviors are encapsulated in aspects whose functionality is driven by a set of
composition rules. Additionally, MalacaTiny agents can utilize the multiple net-
work interfaces offered by Sol because of the AO. This is an advantage for the
development of leisure applications where users with different types of network
technologies in their devices (e.g. Bluetooth or WiFi) can interact with the same
system. In general, FIPA-based approaches offer solutions that are more scalable
because the extension of the system is uniform. Additionally, because the com-
puting is encapsulated inside agents the risk of lateral effect when the system is
extended is lower than in tuple based approaches such as SAPERE. Finally, in
FIPA-based approaches it is easier to ensure the privacy of users, because the
most of the computation is performed locally.

SAPERE agents have a good capacity for adaptation too, their service con-
sumption and provision is easier and additionally, the resulting system is more
robust. While in FIPA-approaches adaption of services is related to the num-
ber of protocols that agents can handle, in tuple based approaches the relation
with the number of tuples which are injected in the space. So, the adaptation
of both types of approaches presents a similar difficulty. The distributed nature
of SAPERE applications results in systems that adapt easily to changes in the
physical space where the application is distributed. In tuple based approaches
the service provision and consumption is more efficient than in FIPA ones be-
cause a direct interaction between agents is unnecessary. The negotiation is done
in the tuple space via a pattern matching process that avoids message exchange.
Finally, SAPERE spaces offers a more robust infrastructure thank to its multiple
SAPERE nodes. This is not a common feature in tuple based approaches but it
is one of the strongest points in SAPERE.

Both approaches can be combined with benefits to both. The AO of Malaca-
Tiny agents and its extensible join point model makes the deployment of these
agents in SAPERE nodes possible. In this combination, MalacaTiny becomes a
tuple-based agent. To do this, it is necessary to develop a distribution aspect
for SAPERE and to add 4 interception points in the agent that correspond with
bonding, reading, removing and updating of the LSAs. The main benefits for
MalacaTiny is the usage of an infrastructure which is more robust than Sol and
offers a natural metaphor to develop services that depend on the location of
users. The main benefits for SAPERE would be to enhance the internal modu-
larization of agents deployed in SAPERE nodes, that promote reuse and ease the
adaptation of agents even at runtime. It is interesting to note that these bene-
fits are not related with features of the coordination approaches, but rather with
adaptations of these agent technologies to the pervasive computing environment.
As future work, we plan to study the combination of these approaches.

26

Inmaculada Ayala et al.

Acknowledgment

Work supported by the Andalusian regional project FamWare P09-TIC-5231, the
European projects INTER-TRUST FP7-317731 and SAPERE FP7-256873, and
the Spanish Ministry Projects RAP TIN2008-01942 and MAVI TIN2012-34840.

References

1.

2.

o

10.
11.
12.
13.

14.
15.

16.

17.

18.

19.

Saha, D., Mukherjee, A.: Pervasive computing: a paradigm for the 21st century.
Computer 36(3) (mar 2003) 25 — 31

Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in
pervasive computing systems. In: Pervasive Computing. Volume 2414 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2002) 167-180

Sadri, F.: Ambient intelligence: A survey. ACM Comput. Surv. 43(4) (October
2011) 36:1-36:66

Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: Technologies,
applications, and opportunities. Pervasive and Mobile Computing 5(4) (2009) 277
- 298

Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3) (2001) 277 — 294

FIPA: The Foundation for Intelligent Physical Agents. http://www.fipa.org/
Ayala, I., Amor, M., Fuentes, L.: An agent platform for self-configuring agents in
the internet of things. In: Third International Workshop on Infrastructures and
Tools for Multiagent Systems. ITMAS 2012. (June 2012) 65-78

Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Pervasive middleware goes
social: The sapere approach. In: Fifth IEEE Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW). (oct. 2011) 9 14

Labrou, Y., Finin, T., Peng, Y.: The current landscape of agent communication
languages. Intelligent Systems 14 (1999) 45-52

Ayala, I., Amor, M., Fuentes, L.: Self-configuring agents for ambient assisted living
applications. Personal and Ubiquitous Computing (2012) 1-11

Amor, M., Fuentes, L.: Malaca: A component and aspect-oriented agent architec-
ture. Information and Software Technology 51(6) (2009) 1052 — 1065

Oracle: Sun SPOT world. http://www.sunspotworld.com/

Libellium: Waspmote. http://www.libelium.com/products/waspmote
Libellium: Meshlium Xtreme. http://www.libelium.com/products/meshlium
Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the tota approach. ACM Trans. Software Engineering and Methodology
18(4) (2009)

Rodriguez, M., Favela, J., Martinez, E., Munoz, M.: Location-aware access to
hospital information and services. IEEE Transactions on Information Technology
in Biomedicine 8(4) (dec. 2004) 448 —455

Mamei, M., Zambonelli, F.: Field-Based Coordination for Pervasive Multiagent
Systems. 1st edn. Springer Publishing Company, Incorporated (2010)

Sant’Anna, C., Lobato, C., Kulesza, U., Garcia, A., Chavez, C., Lucena, C.: On
the quantitative assessment of modular multi-agent system architectures. NetOb-
jectDays (MASSA) 224 (2006)

Scholtz, J., Consolvo, S.: Toward a framework for evaluating ubiquitous computing
applications. IEEE Pervasive Computing 3(2) (2004) 82-88

