
A Self-Organizing Approach for Building and
Maintaining Knowledge Networks

Gabriella Castelli, Marco Mamei, Franco Zambonelli

DISMI - Dipartimento di Scienze e Metodi dell’Ingegneria
University of Modena and Reggio Emilia

Via Amendola 2 , 42100 Reggio Emilia, Italy
{gabriella.castelli,marco.mamei,franco.zambonelli}@unimore.it

Abstract. Pervasive and mobile devices can generate huge amounts of
contextual data, from which knowledge about situations occurring in
the world can be inferred for the use of pervasive services. Due to the
overwhelming amount of data and the distributed and dynamic nature of
pervasive systems, this may be not a trivial task, indeed the management
of contextual data should be run by a dedicate middleware layer, i.e.,
knowledge networks in charge of organizing and aggregate such data to
facilitate its exploitation by pervasive services. In this paper we introduce
a unsupervised, distributed and self-organizing approach to build and
maintain such a layer based on simple agents that organize and extract
useful information from the data space. We also also present a java-based
implementation of the approach and discuss experimental results.

Key words: Distributed Middleware, Knowledge Networks, Context Awareness

1 Introduction

Pervasive and mobile devices and Web 2.0 are already able to generate an over-
whelming amount of data about users and context, from which knowledge about
situations and facts occurring in the world should be inferred for the use of per-
vasive and mobile services. A service in need of understanding what is happening
around can access the produced pieces of data and analyze them to understand
what is the current situation of its context. Nevertheless there are a number
of complexities inherent in this process, such as the communication efforts to
retrieve the useful knowledge out of an overwhelming amount of data, and the
computational efforts to analyze, relate and aggregate such information.

Accordingly, a real challenge for future pervasive services is the investiga-
tion of principles, algorithms, and middleware infrastructures, via which this
growing amount of distributed information can be properly represented, orga-
nized, aggregated, and made more meaningful, so as to facilitate the successful
retrieval by pervasive services [7, 3]. Many approaches [10, 4] are currently going
in the direction of adopting specific middleware layer, i.e., a knowledge network
layer embedding data and knowledge network algorithms and providing effective
access to such data by services.



2 Gabriella Castelli, Marco Mamei, Franco Zambonelli

Unlike traditional approaches (e.g., centralized and/or deterministic) to data
organization and aggregation, we propose a distributed self-organized approach
to organize, link, and aggregate, related items of contextual information. This
choice better suit the decentralized, dynamic, and unpredictable nature of per-
vasive and mobile systems. In particular, in this paper:

1. We present a middleware architecture and prototype to store and manage
contextual data coming from diverse pervasive devices structured according
the W4 Data Model [9]

2. We present an original self-organized algorithmic approach to perform knowl-
edge networking over a massive amount of distributed pieces of knowledge
stored in the above middleware

3. We show a several experiments we performed to test the system and discuss
evaluation results

The remainder of this paper is organized as follows. Section 2 briefly sum-
marizes the W4 Data Model that is used to represent contextual data provided
by pervasive devices. In Section 3 introduce the W4 Knowledge Networks idea,
describe the algorithmic approach to organize isolated and distributed pieces
of paper into networks of correlated data items and then present the overall
middleware architecture. Section 4 presents the implemented prototype and the
evaluation results. Section 5 discusses related work, and Section 6 concludes.

2 The W4 Approach

We adopt the W4 Data Model to represent and structure the data to to illustrate
our self-organizing approach for building and maintaining knowledge networks.
The W4 Data Model has been firstly described in [9]. Here we shortly summarize
its key features and give an overall architectural view of the W4 Middleware.

2.1 The W4 Data Model

The proposed w4 model starts from the consideration that any elementary data
atoms as well as any higher-level piece of contextual knowledge, in the end,
represents a fact which has occurred. Such facts can be expressed by means of a
simple yet expressive four-fields tuples (Who, What, Where, When): “someone
or something (Who) does/did some activity (What) in a certain place (Where)
at a specific time (When)”.

More in particular the four-fields of the W4 data model each describes a
different aspect of a contextual fact:

– The Who field associates a subject to a fact. The Who field is represented by
a type-value pair.

– The What field describes the activity performed by the subject. It is repre-
sented as a string containing a predicate:complement statement.



Self-Organizing Knowledge Networks 3

– The Where field associates a location to the fact. In our model the location
may be a physical point represented by its coordinates, a geographic region,
or it can also be a place label.

– The When field associates a time or a time range to a fact. This may be an
exact time/time range or a context-dependent expression, e.g., now.

The way it structures and organizes information makes the W4 data model
able to represent data coming from very heterogeneous sources and simple
enough to promote ease of management and processing (although we are per-
fectly aware that it cannot capture each and every aspect of context, as freshness
of data, reliability, access control, etc).

2.2 The W4 API and Architecture

In the W4 model, we rely on the reasonable assumption that software drivers
are associated with data sources and are in charge of creating W4 tuples and
inserting them in some sorts of shared data spaces.

Knowledge atoms are stored in the form of W4 tuples in distributed data
spaces. The interface to access the W4 middleware took inspiration from tuple-
space approaches [1] and consists in two basic operation:

void inject(KnowledgeAtom a);

KnowledgeAtom[] read(KnowledgeAtom a);

The inject operation is equivalent to a tuple space ”out operation: an agent
accesses the shared data space to store a W4 tuple there.

The read operation is used to retrieve tuples from the data space via query-
ing. A query is represented in its turn as a W4 template tuple. Upon invocation,
the read operation triggers a pattern-matching procedure between the template
and the W4 tuples that already populate the data space. Pattern-matching op-
erations work rather differently from the traditional tuple space model and may
exploit differentiated mechanisms for the various W4 fields. In [7] we provide
several examples of knowledge representation and knowledge generation using
the W4 Data Model.

Figure 1 depicts the overall architecture of a W4 system. At the bottom
there are the diverse data sources that produce data formatted according the
W4 Data Model and feed a number of W4 tuple spaces. The W4 tuple spaces
are part of the W4 system, in the system there are a variety of agents that can
be in execution:

– Spiders: that access the tuples in the W4 tuple spaces and are able to jump
from a tuple space to another and link tuples that are correlated

– Browsers: that can browse a knowledge network to solve a query and to infer
new tuples

Those agents (i.e., spiders and browsers) and the algorithms to create and man-
age knowledge networks will be discussed in Section 3. Many W4 knowledge
networks can be realized and coexist in the W4 system, each realizing a specific



4 Gabriella Castelli, Marco Mamei, Franco Zambonelli

Fig. 1. The W4 System Architecture

view over the data. Eventually, at the top there are the various services that
access the W4 system to submit query and retrieve data, to whom the internal
W4 system and data location are completely transparent. Indeed they can act
over the system via the W4 API.

We developed a prototype implementation of the described architecture in a
small pervasive computing testbed by extending the LighTS Tuple Space [2], a
light weight tuple space implementation particularly suitable fot context-aware
application , and by realizing spiders and browsers as simple Java agents. The
implemented W4 middleware runs on laptops and on PDAs equipped with wire-
less interface and J2ME-CDC (Personal Profile) Java virtual machine.

3 W4 Knowledge Networks

Although the W4 data model proved to be rather flexible to manage contextual
data, the idea is to exploit the W4 structure to access and exploit distributed
contextual data in a more sophisticated and effective way. More specifically we
propose general-purpose mechanisms and policies to link together knowledge
atoms, and thus form W4 knowledge networks in which it will be possible to
navigate from a W4 tuple to the others. Moreover, new information could be
produced combine and aggregating existing tuples while navigating the space of
W4 tuples.



Self-Organizing Knowledge Networks 5

This paper focuses on the realization of W4 knowledge networks, whose basic
idea has been anticipated also in [9] and [7], but that only in this paper is
eventually realized and evaluated.

3.1 The W4 Knowledge Networks Idea

The W4 knowledge networks approach is based on the consideration that a rela-
tionship between knowledge atoms can be detected by a relationship (a pattern-
matching) between the information contained in the atoms fields. In particular,
for the W4 model, we can identify two types of pattern matching correlations
between knowledge atoms:

– Same value – same field: We can link together W4 tuples belonging to the
same user, about the same place, activity or time (or, more in general, those
W4 tuples in which the values in the same field match according to some
pattern-matching function). Matching two or more same value – same field
relationships, we can render complex concepts related to groups of W4 tuples,
e.g. All students (same subject) who are attending a class (same activity) at
the same room (same location).

– Same value – different field: We can link atoms in which the same information
appears in different fields. This kind of pattern matching can be used for
augmenting the expressive level of the information contained in the W4 tuples.
For example, a knowledge atom having When: 18/09/2008 can be linked with
another atom like Who: Fall Class Begin , When: 18/09/2008 to add semantic
information to that date.

Exploiting those correlations it is possible to find the relationships between
one particular W4 tuple with other tuples in the data space, which may then be
used to create a web of linked information both to more effectively navigate in the
space of information (e.g., for effectively gathering information correlated to a
specific context) and as a basis for more elaborated inference and reasoning (e.g.,
for representing in a comprehensive and expressive way complex situations).

For instance (see also Fig. 2), suppose that Gabriella’s PDA, at a certain time,
creates the following tuple: (student:Gabriella, - , room:room 35, 01/09/2008
10:05 am), where - means an empty field. A correlation can be found with the
following tuple: (class: Computer Foundation, - ,room: room 35, 01/09/2008
10:00-12:00 am). Then a new tuple carrying higher level logical information may
be created: (student:Gabriella, attending: Computer Foundation,room:room 35,
01/09/2008 10:05 am).

3.2 The W4 Knowledge Networks Algorithm

An unsupervised, distributed and self-organizing approach to generate and main-
tain the knowledge networks’ layer is clearly required by the decentralized nature
of pervasive computing systems and the overwhelming amount of generated data,



6 Gabriella Castelli, Marco Mamei, Franco Zambonelli

Fig. 2. W4 knowledge network data inference

which prevent the use of a centralized process for data management. To this end,
we adopt a swarm-based approach which relies on a two-phase process.

The first phase is the identification of all possible correlations between knowl-
edge atoms, and the creation of links between W4 atoms. This can be done by
a number of simple agents (which we call spiders as they weave their webs be-
tween correlated tuples), in charge of identifying relationships between tuples.
Each spider is associated with a pattern matching function that takes a w4 tuple
and matches it against a w4 tuple used as a template. The function returns a
boolean value meaning wether the matching is successful or not, and accordingly
suggesting creating a link or not. Obviously the simpler the matching function is
(i.e., few fields of a w4 tuple are involved), the more the resulting net of links can
be reusable. So each spider is responsible for a single relationship over W fields
E.g., A1 is in charge of linking together all the tuples with corresponding who
fields, for instance all the tuples whose who field corresponds to “user:Gabriella”,
while another agent can search tuples with corresponding where field.

Spiders continuously surf W4 tuple spaces in order to retrieve tuples that
fulfill the specific relationship, those tuples are virtually linked together thus
creating a W4 knowledge network for the given relationship. Obviously spiders
must be capable of analyzing W4 tuples stored in different tuple spaces and
building correlation networks that extends over distributed tuple spaces. The
spiders’ algorithm follows:

define:

rel; //the relation to be satisfied

knet; //the Knowledge network reference

Main:

Do forever:

TupleSpace ts = random();

jumTo (ts);

tuple t[] = ts.read(rel);

knet.add(t);



Self-Organizing Knowledge Networks 7

Done;

The spider chooses a random tuple space and checks if any tuple in the
tuple space fulfills the relationship. If it is positive the tuples are added to the
knowledge network knet by adding a reference to the last tuple space that was
found earlier, i.e. drawing a link between the last tuple space added to the
knowledge network rel and the current one. This process continuously repeats.
In this way, a single knowledge network of links between correlated tuples is
generated. More spiders can work concurrently, building the knowledge networks
layer in a self-organizing fashion.

The second step is the generation of new knowledge atoms, by analyz-
ing which of the identified link can lead to a new W4 atom as a process of
merging related atoms. This is performed by another class of agents, called
browsers. Browser agent surf the knowledge networks trying to generate new
W4 atoms. Each browser is capable of inferencing a specific type of relationship.
The browsers’ algorithm follows:

define:

rel; // the relation that the browser is capable to infer

Main:

Do forever:

TupleSpace ts = random();

tuple t = ts.random();

ts.add (GenerateNewKnowledge(t));

Done;

The browser chooses a random tuple t in the system, and locates all the
knowledge networks in which the tuple t is involved. Then the browser start
to browse each of the found knowledge networks. For each tuple �ti found in a
related knowledge networks, the browser checks if he is able of generate a new
w4 atom carrying higher knowledge. If positive, the new atom is generated and
added to the current tuple space. The issue of bounding the amount of knowledge
generation has been discussed in [8].

3.3 Using W4 Knowledge Networks

The idea at the base of the w4 knowledge networks approach is that spiders and
browsers continuously surf, analyze, correlate and infer new knowledge. In this
way

Although the knowledge networks can be used as the basis for knowledge
reasoning and can lead to the generation of new knowledge, even when new data
are not generated, the web of links between atoms can be fruitfully used during
querying to access and retrieve contextual information more effectually. When a
query is submitted to the W4 tuple space system, a query-solving agent capable



8 Gabriella Castelli, Marco Mamei, Franco Zambonelli

of browsing knowledge networks, i.e. a browser, analyze the query template and
determine one or more knowledge networks to which the matching tuples should
belong. Then the browser agent choose a random W4 tuple space in the system
and scans it until he finds an entry point for one of the identified knowledge
networks, i.e. a tuple belonging to one of those knowledge networks. When the
entry point is found, the agent starts to jump from the entry point tuple to the
other tuples in the identified knowledge network, checking if they matches the
template and finally returns the retrieved tuples. This is beneficial for services
because fewer read operations have to be performed when exploiting knowledge
networks instead of a set of data spaces in which information is not related to
each other.

4 Result Evaluation

To complete the W4 Approach presentation, we report several experimental
results we performed to evaluate the effectiveness and feasibility of the proposed
approach and compare it to other tuple space middle-ware solutions.

To extensively test the approach we developed a simulated environment based
on the Repast framework [http://repast.sourceforge.net] and integrated with
the LighTS technology. We represented a location with a number of users each
moving in the environment. The virtual environment is split in 100 zones, each
of them holds a private W4 tuple space that stores all the tuples generated in it.
Periodically a W4 tuple for each user is generated based on the current position
and the current time. In this scenario many tuples are stored in the W4 tuple
spaces, and services may find difficult to access those data.

4.1 Efficiency

The first set of experiments aims to measure the efficiency of the W4 system
in retrieving information and comparing it with an exhaustive search in tuple
spaces and with an hash based approaches based on the performance of the
above systems when a non destructive query is submitted to the system.

The exhaustive search is performed on a tuple space that embeds the W4
data model facilities but not the W4 knowledge networks mechanisms. When a
query is submitted to this simplified W4 tuple space system, a query agent chose
a random tuple space in the system and scans it seeking for the W4 tuples that
fulfill the query template. Then a random tuple space is chosen again, until the
whole system is scanned.

Hash based tuple space is a well known and popular technique for data in-
dexing in distributed environment. Here we follow an approach similar to [16] in
which a single field of the tuple structure is used for the hashing operation and
indexing purpose. When a tuple is injected in the distributed system, the hash-
ing operation is performed over the designated field and the tuple is then stored
on the resulting tuple space. Then when a query is submitted to the system,



Self-Organizing Knowledge Networks 9

Fig. 3. Efficiency: (a) Number of view operations done by query-solving agents. (b)
Number of view operations done by query agents

the same hashing operation is performed on the query template and the result
indicates the tuple space to scan for results. In this simulations we considered
the hash performed on the who field. Similar results are achieved considering
the others fields of a W4 tuple. Of course other hash based approaches that use
tuple spaces exists. In particular, there are approaches that consider to hash
more than one W field at a time. Those approaches typically rely on pointers
to tuples, and must deal with data duplication, update issues and so on. We
intentionally didn’t consider these approaches, they may obviously have better
performances but, in our opinion, the issues that arise make the approaches not
comparable to the W4 one as the system management become more complex.

The experiment works as follow: we fed the W4 system with fixed amount of
tuples and made them organized in W4 knowledge networks. Then, for the sake
of experiments, we stopped the data sources and submitted to the system the
following complex query: “Retrieve all the users that were near agent A5 was,
on time 500”. For a W4 System this means the following two queries should be
subsequently resolved:



10 Gabriella Castelli, Marco Mamei, Franco Zambonelli

WHO user:A5

WHAT *

WHERE ?var1

WHEN 500

Please note that the when field is automatically transformed in a time interval.
The second query looks as follow:

WHO *

WHAT *

WHERE var1

WHEN 500

Here both the where is automatically considered as a bounding box and the when
field is automatically transformed in a time interval. To solve such a query to
knowledge networks must been investigated, one relating all tuples from user:A5,
and one relating all tuples that refers a specific region of the space.

We run the simulations 15 times and depicted the average values. Figure 3
(a) shows the number of tuple spaces visited by the query-solving agent in the
considered systems. The W4 tuple space systems performs better than the other
considered approaches. Indeed, in the medium case, the exhaustive search has to
query half the number of tuple spaces in the system to solve the first sub-query
and the whole number of the tuple spaces to solve the second ones. The hash
approach works better than the exhaustive query because one of the sub-query is
solved thanks to the hashing operation, nevertheless the other sub-query have to
be solved traditional as in the case of the exhaustive Search. However exploiting
the W4 knowledge networks is even better because the number of accessed tuple
spaces is determined by the number of tuple spaces involved in the knowledge
networks of interest.

Figure 3 (b) shows the number of read operation performed. Also in this case
the W4 tuple space system performs better then the other systems. As in the
previous case, the exhaustive search have to access half the number of tuples
in the systems to solve the first sub-query, and all the tuples in the system
to solve the second one. Here the performance of the hash based systems are
significantly different depending if the hashing is performed on the who field or
on the where field. However the W4 system performs better because all the fields
are considered equally important when building knowledge networks.

4.2 Effectiveness

Provided that the W4 approach exhibits a good behavior in accessing contextual
data (i.e. the access costs are lower than the other considered approaches), we run
a second set of experiments to test the effectiveness of the knowledge networks’
approach, in terms of accuracy of provided results when the knowledge networks
algorithms are running, i.e. the fraction of the documents that are relevant to the
query that are successfully retrieved (also called recall in information retrieval).

In order to test the effectiveness of the approach, we started feeding the
system with W4 tuples generated by the simulated environment and let the



Self-Organizing Knowledge Networks 11

Fig. 4. Accuracy of the indexation over time.

knowledge networks keep organizing. Periodically we checked the content of a
specific knowledge networks respect to the content of the whole W4 system to
measure the percentage of tuples that has been indexed.

Of course the indexing works as quicker as more spiders are involved in, to
this end Figure 4 compares the results obtained when a different number of
spiders is running. The obvious result is that the more spiders are working, the
quicker the knowledge network reaches its indexation level. We can see that it
takes a certain amount of time for the knowledge network to reach its stable
value of indexation that is in the satisfactory range of 80-90% depending on the
number of spiders run. This suggests that the W4 system could be improved
by taking into account the W4 tuples’ injection rate in order to autonomously
determine the right number of spiders running.

Accordingly to this observation, we performed a second set of experiments
varying the dynamism (i.e. the tuples injection rate) of the system respect to the
number of spiders running, the results is quite interesting because they give an
idea of the number of spiders that should run simultaneously in relation to the
dynamism of the system. As we expect, Figure 5 shows that as the dynamism
of the system increases, i.e. tuples are injected in the w4 system more quickly,
the percentage of indexation decrease. That is, when the tuple injection rate
increase, it may be needed to run more spiders and browsers to keep the good
level of indexation.

4.3 Scalability

Another key factor in distributed systems is their ability to scale. The first set
of experiments about the system’ efficiency shows that the system scale at same
extent when increasing the number of tuples stored in the whole system. To test
further the system scalability we performed another set of experiments fixing the



12 Gabriella Castelli, Marco Mamei, Franco Zambonelli

Fig. 5. Accuracy of the indexation Vs dynamism of the system.

number of tuples per tuple space, and varying the number of tuple space in the w4
system. We performed the measurements as described for Efficacy experiments,
and measured the percentage of tuple spaces accessed to solve the query (the
number of tuples accessed is not represented because it is highly correlated, as
shown in 3). Figure 6 depicts results. We can see that the performances improve
when the number of tuple spaces in the system increase. This is due to the
fact that the more the system is wide and distributed, the more selective the
knowledge networks can be. Indeed the W4 approach make sense in a distributed
environment rather than in a centralized and static one.

Fig. 6. Scalability of the w4 systems respect to the number of tuple spaces
in the system (number of tuples per tuple space fixed).



Self-Organizing Knowledge Networks 13

4.4 Overhead

To summarize experimental results show that accessing pre-organized W4 knowl-
edge networks instead of a flat or hash-based tuple space system greatly improves
the system performance in terms access costs while the accuracy of provided re-
sults remains satisfactory. However, the generation of overlay networks never
comes without overhead costs. The idea behind W4 knowledge networks is to
pre-organize data in a fashion that will be useful for a number of services and
will decrease delay experiences by services. In order to keep knowledge networks
feasible and manageable one should find a good trade-off between the number of
knowledge networks to be build in the system and overhead costs associated, in
general only knowledge networks that might be useful (i.e., accessed by agents)
should be built and maintained.

5 Related Work

Context is a very fluid notion and although several researchers claim that it is
very hard to abstract it in terms of variables and data models [12], it is also
a widespread opinion that a more pragmatic perspective should be adopted.
Early works in this area, as from Schmidt et al. [25] and Dey et al. [11], con-
centrates on the issue of acquiring context data from sensors and of processing
such data but they generally miss in identifying a uniform model to describe
the data and analyzing the issues at the middleware level. A different thread
of researchers [14] focuses more on the issue of providing rich data models for
contextual information and of facilitating querying by services. However, this
does not go toward simplicity and generality, which we instead feel should both
be goals also to make the middleware implementation more light-weight. Some
recent proposals, such as [26, 5] focus on providing models for contextual data
that adopt a uniform well-defined structure. Indeed, our W4 proposal accounts
for a very similar structuring for contextual information, and enriches it further
with a well-defined API, and with the possibility of linking data atoms and of
providing application-specific views to services.

An increasing number of research works get inspiration from tuple space
middleware models [1] and propose representing and storing contextual infor-
mation in the form of tuples to be stored in distributed tuple spaces. Egospaces
[17] adopts this perspective, without committing to a specific pre-defined struc-
ture for context tuples, which can make it difficult for services to uniformly
deal with tuples represented in different formats. Other proposal, such as The
Context Fabric model [15] rely on well-structured context tuples. Recent pro-
posals focusing on sensor networks, suggest exploiting a tuple-based approach to
provide application-specific views on sensorial data [20]. In general we consider
tuple-based approaches very suitable for organizing and accessing contextual in-
formation, but we also think that there is need of more structuring and flexibility
than those exhibited by the existing approaches.



14 Gabriella Castelli, Marco Mamei, Franco Zambonelli

In the above described work, the issue of relating contextual data atoms with
each other and of providing different views to different applications is not gener-
ally addressed. More recently, other proposals have adopted a similar endeavor
but have considered the issue of adopting specific ontologies to model context
information and enable other than efficient querying also efficient context-
reasoning [23, 18]. Although such approaches tend to be too application-specific,
they attribute the importance of linking independent atoms of contextual infor-
mation (with ontological relations) and of reasoning not only on individual data
items but also on their relations, an idea which is fully shared by our knowledge
network vision.

Some recent proposals go beyond context modeling and representing and
start consider also context reasoning, i.e. considering related piece of informa-
tion for generating new knowledge as W4 knowledge networks do. Many works,
such as and [22], are focused on situation learning and situation relationships in
smart environment. Other works, such as [21] propose predicate logic as an effec-
tive language for context-aware reasoning. The Knowledge Networks approach
we propose aim to be more general and propose an approach different from
traditional ones, considering self-organizing agents. Campbell et al. [6] consider
the possibility of extracting higher-level knowledge from raw sensed data merg-
ing feature vectors in an opportunistic fashion for people-centric application.
The idea of merging and considering data coming from diverse sources is shared
with the W4 knowledge networks approach. However in the W4 Approach we go
further considering multiple knowledge views that can be accessed by multiple
services.

In [24] the context management processes is performed by BDI agents that
generate and administrate the context artifacts at run time. We share with [24]
the idea of a middleware responsible for contextual data, but we also argue
overwhelming amounts of data require novel approaches for data management,
such as bio-inspired and self-organizing ones.

Also other areas of research contributed towards the realization of our knowl-
edge networks vision, in particular data mining and pattern discovery and granu-
lar computing. See [7] for a critical survey. Data mining [13] always come to play
when dealing with an overwhelming amount of data to be analyzed, indeed the
analysis task performed by the knowledge networks layer can be considered as a
sort of data mining process. Also Granular Computing [27] is of interest, indeed
W4 knowledge atoms can be seen as information granules, providing knowledge
at different scales.

6 Conclusion and Future Works

Despite the promising results achieved so far in the study of the W4 self-
organized knowledge networks algorithms, some research issues still have to be
faced. More experiments should be done to evaluate properly the overhead coasts,
as introduced in Section 4. Moreover, in the current implementation of the W4
system, the number of tuples stored in the system is constantly increasing as



Self-Organizing Knowledge Networks 15

new data are injected in the system. There is the need for a ”garbage collection”
solution and we plan to experiment with a concept of knowledge tuple fading as
introduced in [19]. Finally, security and privacy issues need to be analyzed w.r.t.
accessing W4 tuples and their realtions.

References

1. S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. Computer, 19(8-9):26–
34, 1986.

2. D. Balzarotti, P. Costa, and G. P. Picco. The LighTS Tuple Space Framework and
its Customization for Context-Aware Applications. International Journal on Web
Intelligence and Agent Systems, 50(1-2):36–50, 2007.

3. Bettini, Brdiczka, Henricksen, Indulska, Nicklas, Ranganathan, and Riboni. A
survey of context modelling and reasoning techniques. Pervasive and Mobile Com-
puting, in press.

4. N. Bicocchi, G. Castelli, M. Mamei, A. Rosi, F. Zambonelli, M. Baumgarten, and
M. Mulvenna. Knowledge networks for pervasive services. In ICPS ’09: Proceedings
of the 2009 international conference on Pervasive services, pages 103–112, New
York, NY, USA, 2009. ACM.

5. J. Bravo, R. Hervs, I. Snchez, G. Chavira, and S. Nava. Visualization services
in a conference context: An approach by rfid technology. Journal of Universal
Computer Science, 12(3):270–283, 2006.

6. A. Campbell, S. Eisenman, N. Lane, E. Miluzzo, R. Peterson, H. Lu, X. Zheng,
M. Musolesi, K. Fodor, and G.-S. Ahn. The rise of people-centric sensing. Internet
Computing, IEEE, 12(4):12–21, July-Aug. 2008.

7. G. Castelli, M. Mamei, and F. Zambonelli. Engineering contextual knowledge for
autonomic pervasive services. International Journal of Information and Software
Technology, 52(8-9):443–460, 2008.

8. G. Castelli, R. Menezes, and F. Zambonelli. Self-organized control of knowledge
generation in pervasive computing systems. ACM Symposium on Applied Comput-
ing, 2009, 8-12 March 2009.

9. G. Castelli, A. Rosi, M. Mamei, and F. Zambonelli. A simple model and infras-
tructure for context-aware browsing of the world. In PERCOM ’07: Proceedings of
the Fifth IEEE International Conference on Pervasive Computing and Communi-
cations, pages 229–238, Washington, DC, USA, 2007. IEEE Computer Society.

10. D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski. A knowledge
plane for the internet. In SIGCOMM ’03: Proceedings of the 2003 conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, pages 3–10, New York, NY, USA, 2003. ACM.

11. A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human Computer
Interaction, 16(2):97–166, 2001.

12. P. Dourish. What we talk about when we talk about context. Personal Ubiquitous
Computing, 8(1):19–30, 2004.

13. J. Galloway and S. J. Simoff. Network data mining: methods and techniques for
discovering deep linkage between attributes. In APCCM ’06: Proceedings of the
3rd Asia-Pacific conference on Conceptual modelling, pages 21–32, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society, Inc.



16 Gabriella Castelli, Marco Mamei, Franco Zambonelli

14. K. Henricksen and J. Indulska. Developing context-aware pervasive computing
applications: models and approach. Pervasive and Mobile Computing, 2, 2005.

15. J. I. Hong. The context fabric: an infrastructure for context-aware computing.
CHI ’02 extended abstracts on Human factors in computing systems, pages 554–
555, 2002.

16. Y. Jiang, G. Xue, Z. Jia, and J. You. Dtuples: A distributed hash table based
tuple space service for distributed coordination. Grid and Cooperative Computing,
2006, pages 101–106, October 2006.

17. C. Julien and G.-C. Roman. Egospaces: facilitating rapid development of
context-aware mobile applications. Software Engineering, IEEE Transactions on,
32(5):281–298, 2006.

18. D. Lee and R. Meier. Primary-context model and ontology: A combined approach
for pervasive transportation services. Pervasive Computing and Communications
Workshops, 2007. PerCom Workshops ’07. Fifth Annual IEEE International Con-
ference on, pages 419–424, 2007.

19. R. Menezes and A. Wood. The fading concept in tuple-space systems. In Proceed-
ings of the 2006 ACM Symposium on Applied Computing, pages 440–444, Dijon,
France, 2006. ACM, ACM Press.

20. L. Mottola and G. P. Picco. Logical neighborhoods: A programming abstraction
for wireless sensor networks. In Proc. of the the 2 nd Int. Conf. on Distributed
Computing on Sensor Systems (DCOSS), 2006.

21. A. Ranganathan and R. H. Campbell. An infrastructure for context-awareness
based on first order logic. Personal Ubiquitous Comput., 7(6):353–364, December
2003.

22. P. Reignier, O. Brdiczka, D. Vaufreydaz, J. L. Crowley, and J. Maisonnasse.
Context-aware environments: from specification to implementation. Expert Sys-
tems: The Journal of Knowledge Engineering, 24(5):305–320, November 2007.

23. I. Roussaki, M. Strimpakou, N. Kalatzis, M. Anagnostou, and C. Pils. Hybrid
context modeling: A location-based scheme using ontologies. Pervasive Comput-
ing and Communications Workshops, IEEE International Conference on, (1):2–7,
2006.

24. I. Salomie, T. Cioara, I. Anghel, and M. Dinsoreanu. Rap - a basic context aware-
ness model. Intelligent Computer Communication and Processing, 2008. ICCP
2008. 4th International Conference on, pages 315–318, 2008.

25. A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven, and
W. V. d. Velde. Advanced interaction in context. Proceedings of the 1st Inter-
national Symposium on Handheld and Ubiquitous Computing, 8, 1999.

26. C. Xu and S. C. Cheung. Inconsistency detection and resolution for context-
aware middleware support. Proceedings of the 10th European Software Sngineering
Conference Held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 336–345, 2005.

27. Y. Yao. Three perspectives of granular computing. Journal of Nanchang Institute
of Technology, 25(2):16–21, 2006.


	A Self-Organizing Approach for Building and Maintaining Knowledge Networks
	Gabriella Castelli, Marco Mamei, Franco Zambonelli
	Introduction
	The W4 Approach
	The W4 Data Model
	The W4 API and Architecture

	W4 Knowledge Networks
	The W4 Knowledge Networks Idea
	The W4 Knowledge Networks Algorithm
	Using W4 Knowledge Networks

	Result Evaluation
	Efficiency
	Effectiveness
	Scalability
	Overhead

	Related Work
	Conclusion and Future Works
	References



